THE IMPACT OF CHANGING PIPELINE CONDITIONS ON COMPRESSOR EFFICIENCY

BRANDON RIDENS - SOUTHWEST RESEARCH INSTITUTE (SWRI)

2015 GAS/ELECTRIC PARTNERSHIP CONFERENCE XXIII
OVERVIEW

• Shale Gas Deposits and Production
• Gas Compositions and Comparison
• Centrifugal Compressor Performance
• Simulations with Varying Gas Compositions
• Performance and Efficiency Impacts
• Reciprocating Compressor and Piping System Impacts
• Pulsation and Vibration Case Study
• Summary
SHALE GAS DEPOSITS

- US and Canada largest producers of shale gas
- Predicted 46% of US NG supply will come from shale by 2035
- Hydraulic fracturing and horizontal drilling increasing production

Not All Shale Gas Is Equal

Source: Energy Information Administration
Shale Gas Compositions Around the United States

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
<td>Well 3</td>
<td>Well 4</td>
<td>Well 1</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>7.9</td>
<td>1.5</td>
<td>1.1</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>CO2</td>
<td>1.4</td>
<td>0.3</td>
<td>2.3</td>
<td>2.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Methane</td>
<td>80.3</td>
<td>81.2</td>
<td>91.8</td>
<td>93.7</td>
<td>79.4</td>
</tr>
<tr>
<td>Ethane</td>
<td>8.1</td>
<td>11.8</td>
<td>4.4</td>
<td>2.6</td>
<td>16.1</td>
</tr>
<tr>
<td>Propane</td>
<td>2.3</td>
<td>5.2</td>
<td>0.4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Relative Density (SG)</td>
<td>0.66</td>
<td>0.67</td>
<td>0.61</td>
<td>0.60</td>
<td>0.67</td>
</tr>
</tbody>
</table>

SHALE GAS DEPOSITS (TEXAS)

Source: Ed Bowles – Natural Gas Composition in the U.S. and Impact of Shale Gas (2014)
Shale Gas Compositions at the Same Location

<table>
<thead>
<tr>
<th></th>
<th>Station 1</th>
<th>Station 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well 1</td>
<td>Well 2</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.1191</td>
<td>0.1571</td>
</tr>
<tr>
<td>CO2</td>
<td>1.7376</td>
<td>1.726</td>
</tr>
<tr>
<td>Methane</td>
<td>79.9909</td>
<td>78.8998</td>
</tr>
<tr>
<td>Isobutane</td>
<td>1.2568</td>
<td>0.8767</td>
</tr>
<tr>
<td>n-Butane</td>
<td>0.7993</td>
<td>1.3513</td>
</tr>
<tr>
<td>i-Pentane</td>
<td>0.3373</td>
<td>0.3575</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>0.2766</td>
<td>0.278</td>
</tr>
<tr>
<td>Hexanes</td>
<td>0.2341</td>
<td>0.248</td>
</tr>
</tbody>
</table>

| | | | | | | | | | |
| Relative Density (SG) | 0.72 | 0.72 | 0.71 | 0.69 | 0.65 | 0.76 | 0.76 | 0.75 | 0.75 | 0.67 |

Source: Ed Bowles – Natural Gas Composition in the U.S. and Impact of Shale Gas (2014)
COMPRESSOR PERFORMANCE

- Performance and efficiency are significantly tied to suction and discharge conditions
 - Suction and Discharge pressure/temperature
 - Head
 - Molecular Weight (molar mass)
 - Density and Compressibility
 - Ratio of Specific Heats
- Common conditions to change
 - Suction and Discharge pressure/temperature
 - Head
COMPRESSOR MAPS

Head, H (m)

Flow, Q (m³/h)

Isentropic Head [ft-lbf/lbm]

Actual Flow [cfm]

Compressor Map with Performance Data

- Base Case
- Case 2
- Case 3
- Case 4B
- Case 4
- Case 5
- Case 5B

Theoretical Surge Line

19800 RPM Test
17800 RPM Test
19800 RPM Prediction
17800 RPM Prediction
MEASURED SURGE LINE
• Stoner (Synergi) Pipeline Simulator (SPS)
 • Transient fluid flow simulator of natural gas pipeline networks
 • Types of analyses
 • Control systems
 • Equipment (compressor/pump) performance analysis
 • Pressure-Flow capacity
 • Equations of State (EOS): BWRS, CNGA, AGA-8, and specify unique gas properties
• Model Conditions
 • Gas Composition (SG)
 • Pressure Ratio and Temperature
 • Compressor Speed
 • Gas Flow Rate
 • Compressor map and polytrophic efficiency
 • Gas turbine power, heat rate, and speed
COMPRRESSOR MODEL

- Singular variable speed centrifugal compressor with defined suction and discharge conditions
- No suction/discharge piping or equipment
- Nuovo Pignone Compressor with GE Frame 3 Gas Turbine
- Case Studies:
 - Process and pipeline applications

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Fixed Pressure Ratio</th>
<th>Fixed Compressor Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 2</td>
<td>Fixed Pressure Ratio</td>
<td>Fixed Flow Output</td>
</tr>
<tr>
<td>Case 3</td>
<td>Fixed Suction Pressure</td>
<td>Fixed Compressor Speed</td>
</tr>
</tbody>
</table>
FIXED SPEED CASE STUDY

- Set (constant) conditions:
 - Suction and Discharge Pressure
 - Suction Temperature
 - Compressor Speed

<table>
<thead>
<tr>
<th>Suction Pressure (psig)</th>
<th>Discharge Pressure (psig)</th>
<th>Suction Temperature (F)</th>
<th>Speed (RPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>580.2</td>
<td>855.7</td>
<td>63.8</td>
<td>5200</td>
</tr>
</tbody>
</table>
FIXED SPEED CASE (EFFICIENCY)

- Decrease in efficiency as specific gravity increases
 - SG change of 0.23 ~ 10% change in Efficiency
FIXED SPEED CASE (HEAD & FLOW)

- A decrease in initial Head as SG increases (38%)
- An increase in flow as head decreases (32%)
FIXED SPEED CASE (POWER & FUEL CONSUMPTION)

- Increase of power utilization as SG increases
- Fuel is the same as the process gas

Rated Compressor Power Utilized versus Specific Gravity

- Iso Power of 13751 HP

Fuel Consumption versus Specific Gravity

- Fuel Flow Rate (SCFM)
VARIABLE SPEED CASE STUDY

- Set (constant) conditions:
 - Suction and Discharge Pressure
 - Suction Temperature
 - Flow Output

<table>
<thead>
<tr>
<th>Suction Pressure (psig)</th>
<th>Discharge Pressure (psig)</th>
<th>Suction Temperature (F)</th>
<th>Flow (MMSCFD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>580.2</td>
<td>855.7</td>
<td>63.8</td>
<td>423.8</td>
</tr>
</tbody>
</table>
VARIABLE SPEED CASE (EFFICIENCY)

• Decrease in efficiency as specific gravity increases
 • SG change of 0.23 ~ 2% change in Efficiency
VARIABLE SPEED CASE (HEAD)

- Decrease in initial Head as specific gravity increases
 - 38% decrease in head with a fixed flow rate
VARIABLE SPEED CASE (POWER & FUEL CONSUMPTION)

- Very little change in power utilized
- Decrease in fuel consumption as SG increases (28%)

Rated Compressor Power Utilized versus Specific Gravity

Iso Power of 13751 HP

Fuel Consumption versus Specific Gravity

![Graphs showing relationship between power utilization and specific gravity, and fuel consumption and specific gravity.](chart)
FIXED SPEED/FLOW CASE STUDY

- Set (constant) conditions:
 - Suction Pressure
 - Suction Temperature
 - Compressor Speed
 - Flow Output

<table>
<thead>
<tr>
<th>Suction Pressure (psig)</th>
<th>Suction Temperature (F)</th>
<th>Flow (MMSCFD)</th>
<th>Speed (RPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>580.2</td>
<td>63.8</td>
<td>398.4</td>
<td>5200</td>
</tr>
</tbody>
</table>
FIXED SPEED/FLOW CASE (EFFICIENCY)

- Increase in efficiency as specific gravity increases
 - SG change of 0.23 ~ 3% change in Efficiency
FIXED SPEED/FLOW CASE (HEAD)

- Increase in initial head as specific gravity increases
 - 21% increase in head with a fixed speed and flow rate

![Head versus Specific Gravity Graph](chart.png)
FIXED SPEED/FLOW CASE (POWER & FUEL CONSUMPTION)

- Increase of power utilization (38%) and fuel consumption (20%) as SG increases
- Approaching surge conditions
PULSATION AND VIBRATION ISSUES

- Changes in gas compositions can cause harmful resonances from reciprocating compressors
 - Pulsations caused by periodic pulsations (pressure & velocity)
 - High amplitude pulsations (resonance) caused when frequencies of pulsations coincide with acoustic natural frequencies
- Horsepower losses and increases with pressure drop associated with pulsation mitigations (increase fuel consumption)
 - Pulsation bottle
 - Orifices

\[f = \frac{\text{rpm}}{60} \text{ where } n = 1, 2, 3, \ldots \]
VIBRATION SAFETY & RELIABILITY CONCERNS

- Vibration ➔ Stress ➔ Failure
- Noise ➔ Operation/Environmental Safety Issues

- Cracks and fatigue failures
- Insulation deterioration
- Compressor cylinder vibration and nozzle failures
- Valve failures
- Loosening or breaking of piping clamps
- Foundation damage or failure
- Elevated noise
- Flow measurement inaccuracies
- Overall reduction of compressor performance
PULSATION ANALYSIS CASE STUDY

- Existing reciprocating compressor station operating with new shale gas using initial pulsation mitigations for older gas composition
- Operating with the same conditions (compressor speed)

<table>
<thead>
<tr>
<th></th>
<th>Existing % mol</th>
<th>Future % mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>0.958</td>
<td>1.761</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.347</td>
<td>0.081</td>
</tr>
<tr>
<td>Methane</td>
<td>97.909</td>
<td>77.947</td>
</tr>
<tr>
<td>Ethane</td>
<td>0.494</td>
<td>11.782</td>
</tr>
<tr>
<td>Propane</td>
<td>0.19</td>
<td>4.718</td>
</tr>
<tr>
<td>Iso-Butane</td>
<td>0.036</td>
<td>1.167</td>
</tr>
<tr>
<td>N-Butane</td>
<td>0.042</td>
<td>1.35</td>
</tr>
<tr>
<td>Iso-Pentane</td>
<td>0.01</td>
<td>0.523</td>
</tr>
<tr>
<td>N-Pentane</td>
<td>0.007</td>
<td>0.34</td>
</tr>
<tr>
<td>N-Hexane</td>
<td>0.007</td>
<td>0.248</td>
</tr>
<tr>
<td>N-HEPTANE</td>
<td>0</td>
<td>0.052</td>
</tr>
<tr>
<td>N-OCTANE</td>
<td>0</td>
<td>0.011</td>
</tr>
<tr>
<td>N-NONANE</td>
<td>0</td>
<td>0.001</td>
</tr>
<tr>
<td>BENZENE</td>
<td>0</td>
<td>0.002</td>
</tr>
<tr>
<td>METHYLBENZENE</td>
<td>0</td>
<td>0.002</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>16.511</td>
<td>21.288</td>
</tr>
</tbody>
</table>
COMPARISON OF SPEED OF SOUND

Decrease in the SOS of 17 to 21% depending on the operating conditions.
RESPONSE SHIFTING

- All acoustic natural frequency responses shift down
- 6.5 Hz response (Helmholtz or piping length response)
- 17 Hz response (lateral length or other piping response)
- 35 Hz response (cylinder nozzle or piping length response)

- Issues seen in field
 - Floor vibrations
 - Pulsation on Discharge
 - Pulsation on Suction (potential baffle failures)
SUGGESTED MODIFICATIONS

• Option 1
 • Orifice installation in discharge cylinder nozzle
 • Rerouting of discharge piping
 • Implementation of more rigid piping restraints
 • De-coupling of cylinder supports

• Option 2
 • Combined with Option 1
 • Modify internal and external components of the existing pulsation bottles
 • Suction and discharge internal and external choke tubes
 • Suction and discharge baffles

• Option 3
 • Combined with Option 1
 • Fabricate and install new pulsation bottles
SUMMARY

- Notable impact on efficiency and performance
 - Efficiency change upwards of 10%
 - Head change upwards of 40%
 - Power utilized change upwards of 38%
 - Fuel consumption change upwards of 28%
- Possibility of reaching surge under certain conditions
- Pulsation and vibration issues may be experienced causing potential damage, loss of performance, and/or need for modifications
THANK YOU

• Brandon Ridens
 • Brandon.ridens@swri.org
 • 210-522-3459

• Adrian Alvarado
 • Adrian.alvarado@swri.org

• Augusto Garcia Hernandez
 • Augusto.garciahernandez@swri.org

• Eugene (Buddy) Broerman III
 • Eugene.broerman@swri.org